Insight into miRNA biogenesis with RNA sequencing
نویسندگان
چکیده
MicroRNAs (miRNA) are small RNAs that posttranscriptionally regulate gene expression, predominantly by modulating the translation and stability of target messenger RNAs [1]. Over the last 15 years, a tremendous expansion of knowledge has changed the perception of miRNAs from a rare peculiarity in nematode worms to a ubiquitous layer of gene expression regulation, with broad roles in development, and cellular and organismic homeostasis across animal and plant species. Accordingly, aberrant miRNA expression is a hallmark of various severe disease phenotypes such as cardiomyopathies or cancer. Nevertheless, despite extensive efforts to dissect miRNA functions, many open questions are still remaining. Especially the upstream events that regulate processing have recently received increasing attention, as the DNA elements that control miRNA expression and the cellular signaling pathways that fine-tune miRNA processing are still poorly characterized. One aspect of the miRNA biogenesis pathway that remains challenging is to understand why these short RNAs are expressed as long primary transcripts (pri-miRNA) that can be several kilobases in length. While several attempts have been made to predict the transcription start sites (TSS) of pri-miRNAs, their validation remains an experimental challenge due to their nuclear localization and decreased stability compared to mRNAs. pri-miRNAs are processed co-transcriptionally to precursor miRNA hairpins (pre-miRNA) by the Microprocessor complex. pre-miRNAs are then further processed by Dicer into mature miRNAs and incorporated into the RNA-induced silencing complex (RISC) to exert their functions [2]. At the same time, the complex can distinguish pri-miRNA transcripts from unrelated RNA stem-loop structures through unknown mechanisms, likely dependent on sequence elements in the flanking regions. In our recent work we show that the endogenous Microprocessor activity towards individual pri-miRNAs can be determined using RNA sequencing of chromatin-associated RNA and random primed library generation [3]. Using this approach we identify the Microprocessor cleavage signature, a pronounced dip in the sequencing reads of chromatin bound pri-miRNAs reminiscent of the cleaved-out pre-miRNA hairpin. Based on the extent of this signature, we define the MicroProcessing Index (MPI) as a measure for processing efficiency. Genome-wide assessment of the MPIs of all expressed pri-miRNAs shows that processing is one of the major determinants for the expression level of individual mature miRNAs, exceeding the contribution from transcriptional or post-processing regulation. The processing efficiency of specific pri-miRNAs is comparable between cell lines, suggesting a major impact of primary sequence and RNA structure, and to a lesser extent a differential regulation by cell-type specific co-factors. We …
منابع مشابه
Kinetic Analysis Reveals the Fate of a MicroRNA following Target Regulation in Mammalian Cells
Considerable details about microRNA (miRNA) biogenesis and regulation have been uncovered, but little is known about the fate of the miRNA subsequent to target regulation. To gain insight into this process, we carried out kinetic analysis of a miRNA's turnover following termination of its biogenesis and during regulation of a target that is not subject to Ago2-mediated catalytic cleavage. By qu...
متن کاملTranscriptome and small RNA deep sequencing reveals deregulation of miRNA biogenesis in human glioma.
Altered expression of oncogenic and tumour-suppressing microRNAs (miRNAs) is widely associated with tumourigenesis. However, the regulatory mechanisms underlying these alterations are poorly understood. We sought to shed light on the deregulation of miRNA biogenesis promoting the aberrant miRNA expression profiles identified in these tumours. Using sequencing technology to perform both whole-tr...
متن کاملLarge-scale analysis of microRNA expression, epi-transcriptomic features and biogenesis
MicroRNAs are important genetic regulators in both animals and plants. They have a range of functions spanning development, differentiation, growth, metabolism and disease. The advent of next-generation sequencing technologies has made it a relatively straightforward task to detect these molecules and their relative expression via sequencing. There are a large number of published studies with d...
متن کاملMicroprocessor activity controls differential miRNA biogenesis In Vivo.
In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous pr...
متن کاملThe Exoribonuclease Nibbler Controls 3′ End Processing of MicroRNAs in Drosophila
MicroRNAs (miRNAs) are endogenous noncoding small RNAs with important roles in many biological pathways; their generation and activity are under precise regulation [1-3]. Emerging evidence suggests that miRNA pathways are precisely modulated with controls at the level of transcription [4-8], processing [9-11], and stability [12, 13], with miRNA deregulation linked with diseases [14] and neurode...
متن کامل